Posts

A 5/8 wavelength vertical for 10 meters. Post #224

How would you like to build a 10 meter vertical with some gain and a lower radiation angle than the usual quarterwave vertical?  You can realize this goal by building and using a 5/8 wavelength vertical antenna on the popular 10 meter amateur radio band. If you use 50-ohm coaxial cable as your feed line, you'll need a matching device at the base of the antenna to make the antenna work correctly.  However, you can simplify the matching problem by using 450-ohm ladder line, a 4:1 balun, and a short piece of 50-ohm coaxial cable connected to the antenna terminal of your antenna transmatch.  The 5/8 wavelength vertical also requires a ground radial system to realize its full potential.  The radial system needn't be an extensive affair buried in the ground.  I used six elevated 5/8 wavelength radials for my antenna.  Thanks to the ladder line, the 5/8 wavelength vertical also is usable on 20 and 15 meters. Faced with a more complicated construction project than the usual quarte

The Bent Dipole or Inverted "U" antenna. Post #223

Have you ever wanted to erect a full half wave dipole antenna for your favorite amateur radio band, but just didn't have enough horizontal space to put the antenna?  This could be a problem for 80 and 40 meter dipoles, which can stretch out to 135 feet/41.15 meters (80 meters) and to 67 feet/20.42 meters (40 meters). According to an article by Claude Jollet (VE2DPE), most of the rf radiated and received by a dipole is concentrated "in the middle 60% or so of the antenna...the ends can be dropped down from the horizontal without much adverse effect." That was great news to me, since my back yard has a maximum length of 50 feet/15.24 meters bordering the rear of my house.  So, if I bent the horizontal dipole at the 60% part of the flat top and let the remaining length hang down well above ground, I should still retain most of the dipoles good qualities. I decided to erect a quickly built bent or inverted "U" dipole to see what results I could get. MATERIA

A Full Wavelength Loop for 40 through 10 Meters. Post #222

Having built a series of verticals, inverted vees, half squares, and loops for my amateur radio activities, I decided to "thin the heard" of my less than successful antenna efforts and concentrate on a few antennas that have given me the most contacts and overall satisfaction. Although I love the ease of assembly and portability of homebrew vertical antennas, I just don't enjoy the labor involved in putting in a ground radial system.  The elevated counterpoise systems I've used have been less labor intensive than the buried radial approach, but, still, there is a lot of wire running around my property which is a safety hazard for children and pets. The inverted vee antennas are being kept for portable and emergency use.  I have a few telescoping fiberglass masts which make raising these antennas an easy task. Since I lack the space to erect a 80-Meter horizontal 1/2 wavelength flat top dipole (the familiar "doublet" antenna), I have put that antenna o

A 15-Meter Half Square Antenna. Post #221

Now that my 20-Meter half square antenna is performing well, it's time to build its companion for 15-Meters. The half square antenna is a basic 2-element wire array using two 1/4 wavelength vertical elements connected at the top by a horizontal 1/2 wavelength phasing line.  The antenna is fed in phase and shows bidirectionality, modest gain, and some immunity from noise on its sides.  A ground radial system isn't required. By feeding the half square in one of the upper corners, we find the current maximum and a fairly good match to 50-ohm coaxial cable. MATERIALS: Since my two MFJ fiberglass masts were already being used by the 20-Meter half square antenna, I decided to make two new masts out of those 4-foot/1.21 meters surplus military fiberglass poles you see advertised in the Amateur Radio magazines.  I had enough mast sections to make two, 20-foot/6.09 meters masts. Two 7-foot/2.13 meters wooden support stakes for the masts. Number 14 AWG housewire to make the

A simple 20-Meter half square antenna. Post #220.

I thoroughly enjoyed my first half square antenna during this past weekend.  Built for 40-meters, the easily assembled antenna exhibited a bidirectional pattern, offered some gain, required no ground system, and was fairly immune to noise and qrm from the sides.  I disassembled the antenna on Monday and stored it for future use. Now, I wanted to build a similar antenna for 20-Meters, one of my favorite DX bands.  I generally followed the pattern of the earlier half square with a few modifications. In general terms, the half square antenna is a basic 2-element wire array fed in phase using two 1/4 wavelength verticals connected by a 1/2 wavelength horizontal phasing line running from the top of each vertical element.  According to Rudy Stevens (N6LF), "the theoretical gain over a single vertical is 3.8dBi."  The half square is fed at the top of one of the verticals, where the current is at a maximum.  This arrangement is a good match for a 50-ohm coaxial feed line. Alth